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Motivation

(1) complex multivariate relationships in ERC may not be sufficiently modelled by
previous GNN-based methods.

Dialogue Emotion T A X

oo

Wait, Rach! Where's the
other one?

Calm voice

Oh what, you-you want
both of them?

Rachel Karen Green,
where's the other earring?!

Okay, okay, okay, look,
just don't freak out, but I
kinda lost it.

Soft voice

I know it's in the
apartment, but I definitely
lost it.

[ Low voice |
Well, what am | going to
tell Monica? She wants to

wear them tonight!

Loud voive

| . Textual information . Acoustic information . Visual information

Uy Neutral

u; Surprise

Us Anger

prediction

Uy Fear

Uus Neutral

u Fear

prediction

Figure 1. An example of multimodal dialogue (left) and the com-
plex multivariate relationships of u3 and ue (right).



o ATAI
@ Chongaing Lhiversity Advanced Technique of

of Technology Atificial Intelligence

(2) It has been shown that the propagation rule of GNNs (i.e., aggregating
and smoothing messages from neighbours) is an analogy to a fixed low-pass
filter , and it is mainly low-frequency messages that flow in the graph while
the effects of high-frequency ones are much weakened
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Embedding

@ Textual modality @ Acoustic modality @ Visual modality € Concatenation

Figure 2. Detailed architecture of the proposed M*Net.
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Multivariate Propagation

1 )
vi v vl v u.g vt ff — ve(v), if hyperedge e is incident with node v; @
Y ‘ || B U'; otherwise.
vt — (D 'HW B TH V), (5)

Let H € RV#I*I€4] represent the incidence
matrix, in which a nonzero entry H,. = 1 indicates that the
hyperedge e is incident with the node v; otherwise H,, = 0.
in which VIO = {of | € [I,N],z € {t,a,v}} €
RIV#IXDnr s the input at layer [. o is a non-linear activation
- i function. W, = diag(w(ey), ..., w(e|g,,|)) is the hyperedge
) e weight matrix. Dy, € RIV#IXIVxl and B € RIE#[x1€x] are

the node degree matrix and hyperedge degree matrix,
Multi-frequency Propagation

F = U = 0y, O = 00 (6)
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(7)

Hypergraph Conv _ —1/2 -1/2 _
o o vtypgp t - JFp=1-D; ""AD; """ =L.
P— L3 2 1 v‘a“ v :
J.\\.\ @ n Jixce=Fi-p, Fuxc o =Fn-p. (8)
00 000 ne o oy (k+1) _ R (k) h (k)
vy vy v§ v;’vg’vg" v ! F :R(EF )+R (‘Fh'F )

9)

______________________________________________________________________________________________________ _F0) 4 (RI- R"")D_UEAD;/EF{‘*),
h,
i) = i fi.ay,  (10)
F AR jezﬁ; \/|JV|\/IN'|j
"

ri. — vy = tanh(Ws(fi ey @ fi.0)))- (11)

fo TR e et
fl= fiey Ji = Faoy 1= 1o (12)

Multi-frequency Propagation
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'“'I;it' """"""" i 63 — U‘f@ftt@v?@ftaegweef—f} (13)
ey 7o O — é; = ReLU(e;),
5 B P; = softmax(W4é; + by), (14)
"""""""""" ?1‘ A
G i = argmax(P;[7]),
= T
EE_. Z 150
% 9 1 Num c(2)
=) & L=——— > D logPislyi ] + M6y, (15)

D=1 C(8) i=1 j=1
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Experiments

| . N

Methods Network IEMOCAP Average (w) | MELD Average (w)

Accuracy Fl Accuracy Fl1

CMN“ [14] Non-GNN - 58.50 - -

ICON™ [13] Non-GNN 64.00 63.50 - -
DialogueRNN' [24]  Non-GNN 63.51 62.90 59.92 57.60
o MetaDrop® [5] Non-GNN 65.76 65.58 - 58.30
% DialogueGCN' [12]  GNN-based 66.17 66.24 57.01 55.59
5 MMGCNT [ 18] GNN-based | 65.80 65.41 60.42 58.31
MM-DFN' [17] GNN-based 68.21 68.18 59.81 58.42
M>Net (ours) GNN-based 69.50 69.08 61.65 59.22
- DialogueGCN' [12]  GNN-based 63.96 64.44 63.49 62.78
E MMGCNT [18] GNN-based 66.79 66.99 66.63 65.13
g DialogueRNN? [24]  Non-GNN 68.64 68.72 65.94 65.31
= MetaDrop? [5] Non-GNN 69.38 69.59 66.63 66.30
MM-DENT [17] GNN-based 69.87 69.48 67.01 66.17
M?Net (ours) GNN-based 72.46 72.49 68.28 67.05
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Experiments
IEMOCAP MELD

Methods Acc. Fl | Ace.  FI

M*Net 7246 7249 | 6828 67.05
1 | w/o multivariate info. 7006 70.05 | 67.74 66.36
2 | w/o multi-frequency info. 69.87 69.74 | 67.36 66.03
3 | w/o hyperedge weight w(e) | 70.30 70.45 | 68.11 66.99
4 | w/o node weight 7. (v) 7098 71.02 | 68.05 66.92
5 | w/o both weights 70.12  70.09 | 67.89 66.75
6 | H — G in series 68.39 68.44 | 68.20 66.84
7 | G — H in series 69.50 69.70 | 68.05 66.85

Table 3. Ablation studies of M>Net.
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Figure 3. Results of M?Net at different graph layers. In (a) and (c), effects of L are tested by fixing K as in the best-performing models.
In (b) and (d), effects of K are tested by fixing L as in the best-performing models.
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Figure 4. Performance comparison with FAGCN.
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